[This question paper contains 4 printed pages.]

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt all questions.
- 3. Attempt any two parts from each question.
- 4. Marks are indicated against each question.
- 1. (a) Form an equation whose roots are -1, 2, $3 \pm 2i$.
 - (b) Solve the equation

$$x^3 - 13x^2 + 15x + 189 = 0,$$

being given that one of the roots exceeds another by 2.

(c) If α , β , γ , be the roots of the equation (6) $x^{3} + 5x^{2} - 6x + 3 = 0$, find the value of

P.T.O.

(6)

(6)

(i)
$$\sum \alpha^3$$
 (ii) $\sum (\alpha - \beta)^2$.

- 2. (a) Prove that: $2^{10}\cos^{6}\theta\sin^{5}\theta = \sin 11\theta + \sin 9\theta - 5\sin 7\theta - 5\sin 5\theta + 10\sin 3\theta + 10\sin\theta.$ (6.5)
 - (b) Sum the series : (6.5) $\cos \alpha + \cos (\alpha + \beta) + \cos (\alpha + 2\beta) + \cdots$ to n terms, provided $\beta \neq 2k\pi$.
 - (c) State DeMoivre's theorem for rational indices and use it to solve the equation : (6.5)

$$x^7 - x^4 + x^3 - 1 = 0.$$

3. (a) Find the characteristic roots of the matrix A where (6)

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -4 & 2 \\ 0 & 0 & 7 \end{bmatrix}$$

(b) Solve the system of linear equations (6)

$$2x - 5y + 7z = 6$$

x - 3y + 4z = 3
$$3x - 8y + 11z = 11$$

2

(c) Using Cayley Hamilton's Theorem, find the value of A³, where
 (6)

$$\mathbf{A} = \begin{bmatrix} -1 & 1 & 2 \\ 0 & 1 & -1 \\ 2 & 2 & 1 \end{bmatrix}$$

- 4. (a) Let X and Y be two subspace of a vector space
 V. (6.5)
 - (i) Prove that the intersection X ∩ Y is also subspace of V.
 - (ii) Showthat the union $X \cup Y$ need not be a subspace of V.
 - (b) Let V = F[a, b] be the set of all real valued functions defined on the interval [a, b]. For any f and g in V, c in R, we define

$$(f + g)(x) = f(x) + g(x),$$

 $(c.f)(x) = cf(x)$

Prove that V is a vector space over R, where R denotes the set of real numbers. (6.5)

(c) Show that the vectors $v_1 = (1,1,1)$, $v_2 = (1,1,0)$, $v_3 = (1,0,0)$ form a spanning set of $R^3(R)$, where R denotes the set of real numbers. (6.5)

P.T.O.

5. (a) Find the multiplicative inverse of the given elements (if it exists) if it does not exist, give the reason

(i) [12] in
$$Z_{16}$$
 (ii) [38] in Z_{83} (6)

(b) Find the order of each of the following permutations

(i)
$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 4 & 5 & 3 & 2 & 1 \end{pmatrix}$$

(ii) $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 6 & 7 & 5 & 1 & 8 & 2 & 3 \end{pmatrix}$

- (c) Let G be a group. Prove that G is abelian if and only if $(ab)^{-1} = a^{-1}b^{-1}$ for all $a, b \in G$. (6)
- 6. (a) Prove that the set $S = \{0, 2, 4, 6, 8\}$ is an abelian group with respect to addition modulo 10. (6.5)
 - (b) Let G be the group of all 2×2 invertible matrices with real entries under the usual matrix multiplication. Show that subset S of G defined by

$$S = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix}, b = c \right\}, \text{ does not form a subgroup of}$$

G. (6.5)

(c) Show that Q(√2) = {a + b√2 : a, b ∈ Q} is a subring of R, where R is a set of real numbers & Q is set of rational numbers. (6.5)

(500)

[This question paper contains 4 printed pages.]

		Your Roll No.
Sr. No. of Question Paper	:	27 Aug 1
Unique Paper Code	•	62351201
Name of the Paper	:	Algebra
Name of the Course	:	B.A. (Prog.)
Semester	:	II
Duration: 3 Hours		Maximum Marks : 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt all questions.
- 3. Attempt any two parts from each question.
- 4. Marks are indicated against each question.
- 1. (a) Form an equation whose roots are 1, -1, i, -i.
 - (b) Solve the equation

 $x^3 - 5x^2 - 16x + 80 = 0,$

being given that the sum of two of its roots is zero. (6)

(c) Form the cubic equation whose roots are the values of α , β , γ given by the relations

P.T.O.

(6)

$$\alpha + \beta + \gamma = 3$$

$$\alpha^{2} + \beta^{2} + \gamma^{2} = 5$$

$$\alpha^{3} + \beta^{3} + \gamma^{3} = 11.$$

Hence find the value of $\alpha^4 + \beta^4 + \gamma^4$. (6)

(6.5)

2. (a) Prove that :

$$\tan 5\theta = \frac{5 \tan \theta - 10 \tan^3 \theta + \tan^5 \theta}{1 - 10 \tan^2 \theta + \tan^4 \theta}$$

- (b) Sum the series : (6.5) $\cos \theta \sin \theta + \cos^2 \theta \sin 2\theta + \dots + \cos^n \theta \sin n\theta$ where $\theta \neq k\pi$.
- (c) State DeMoivre's theorem for rational indices and use it to solve the equation : (6.5)

$$z^7 + z = 0$$

3. (a) Verify that the matrix

$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$

satisfies its characteristic equation and hence obtain A^{-1} . (6)

3

(b) Solve the system of linear equations

$$x - 3y + z = -1$$

 $2x + y - 4z = -1$
 $6x - 7y + 8z = 7$

(c) Reduce the matrix

.

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 3 & 4 & 5 & 2 \\ 2 & 3 & 4 & 0 \end{bmatrix}$$

to its normal form and then find its rank. (6)

- 4. (a) Show that the vectors $v_1 = (1,1,2,4)$, $v_2 = (2, -1, -5, 2)$, $v_3 = (1, -1, -4, 0)$ and $v_4 = (2,1,1,6)$ are linearly independent in R⁴(R). (6.5)
 - (b) Let V be the vector space of all n×n square matrices over a field F. Show that the set S of all symmetric matrices over Fisa subspace of V.

(6.5)

(c) Let V be the set of ordered pairs (a, b) of real numbers. Let us define

$$(a, b) + (c, d) = (a + b, c + d)$$

and $k(a, b) = (ka, 0)$

Show that V is not a vector space over R, where R is the set of real numbers. (6.5)

(6.5)

P.T.O.

(6)

5. (a) Write
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 4 & 10 & 5 & 7 & 8 & 2 & 6 & 9 & 1 \end{pmatrix}$$

as a Product disjoint cycles, construct its
associated diagram and find its order. (6)

4

- (b) State Euler's theorem. Hence, show that $23^{12} \equiv 1 \pmod{28}$. (6)
- (c) Let $G = R \{-1\}$. Define * on G by a * b = a + b + ab. Show that $\langle G, * \rangle$ is a group. (6)

6. (a) Let
$$G = GL_2(R)$$
. Show that $T = \left\{ \begin{bmatrix} a & b \\ 0 & d \end{bmatrix}, ad \neq 0 \right\}$
is a subgroup of G. (6.5)

- (b) Prove that rigid motions of a square yield the group S_4 . (6.5)
- (c) The set of Gaussian integers Z[i] = [a + bi, a, b ∈ Z} is a subring of the ring of complex numbers C.