[This question paper contains 4 printed pages.]
Sr. No. of Question Paper : 4997
Unique Paper Code : 62351201
Name of the Paper : Algebra
Name of the Course
Semester
Duration: 3 Hours
(i) $\sum \alpha^{3}$
(ii) $\quad \sum(\alpha-\beta)^{2}$.
2. (a) Prove that:
$2^{10} \cos ^{6} \theta \sin ^{5} \theta=\sin 11 \theta+\sin 9 \theta-5 \sin 7 \theta-5 \sin$ $5 \theta+10 \sin 3 \theta+10 \sin \theta$.
(b) Sum the series:
$\cos \alpha+\cos (\alpha+\beta)+\cos (\alpha+2 \beta)+\cdots$ to n terms, provided $\beta \neq 2 \mathrm{k} \pi$.
(c) State DeMoivre's theorem for rational indices and use it to solve the equation :

$$
\begin{equation*}
x^{7}-x^{4}+x^{3}-1=0 \tag{6.5}
\end{equation*}
$$

3. (a) Find the characteristic roots of the matrix A where

$$
A=\left[\begin{array}{rrr}
1 & 2 & 3 \tag{6}\\
0 & -4 & 2 \\
0 & 0 & 7
\end{array}\right]
$$

(b) Solve the system of linear equations

$$
\begin{gather*}
2 x-5 y+7 z=6 \tag{6}\\
x-3 y+4 z=3 \\
3 x-8 y+11 z=11
\end{gather*}
$$

(c) Using Cayley Hamilton's Theorem, find the value of A^{3}, where

$$
A=\left[\begin{array}{rrr}
-1 & 1 & 2 \tag{6}\\
0 & 1 & -1 \\
2 & 2 & 1
\end{array}\right]
$$

4. (a) Let X and Y be two subspace of a vector space V.
(i) Prove that the intersection $\mathrm{X} \cap \mathrm{Y}$ is also subspace of V .
(ii) Showthat the union $X \cup Y$ need not be a subspace of V.
(b) Let $V=F[a, b]$ be the set of all real valued functions defined on the interval $[a, b]$. For any f and g in V, c in R, we define

$$
\begin{gathered}
(f+g)(x)=f(x)+g(x) \\
(c . f)(x)=c f(x)
\end{gathered}
$$

Prove that V is a vector space over R, where R denotes the set of real numbers.
(c) Show that the vectors $\mathrm{v}_{1}=(1,1,1), \mathrm{v}_{2}=(1,1,0)$, $v_{3}=(1,0,0)$ form a spanning set of $R^{3}(R)$, where R denotes the set of real numbers.
5. (a) Find the multiplicative inverse of the given elements (if it exists) if it does not exist, give the reason
(i) $[12]$ in Z_{16}
(ii) [38] in Z_{83}
(b) Find the order of each of the following permutations
(i) $\mathrm{f}=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 4 & 5 & 3 & 2 & 1\end{array}\right)$
(ii) $\mathrm{f}=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 6 & 7 & 5 & 1 & 8 & 2 & 3\end{array}\right)$
(c) Let G be a group. Prove that G is abelian if and only if $(a b)^{-1}=a^{-1} b^{-1}$ for all $a, b \in G$.
6. (a) Prove that the set $\mathrm{S}=\{0,2,4,6,8\}$ is an abelian group with respect to addition modulo 10 . (6.5)
(b) Let G be the group of all 2×2 invertible matrices with real entries under the usual matrix multiplication. Show that subset S of G defined by $S=\left\{\left[\begin{array}{ll}a & b \\ c & d\end{array}\right], b=c\right\}$, does not form a subgroup of G.
(c) Show that $\mathrm{Q}(\sqrt{2})=\{\mathrm{a}+\mathrm{b} \sqrt{2}: \mathrm{a}, \mathrm{b} \in \mathrm{Q}\}$ is a subring of R, where R is a set of real numbers \& Q is set of rational numbers.
[This question paper contains 4 printed pages.]

Sr. No. of Question Paper :	$\mathbf{5 0 1 6}$
Unique Paper Code	$: 62351201$
Name of the Paper	$:$ Algebra
Name of the Course	$:$ B.A. (Prog.)

Semester : II
Duration : 3 Hours Maximum Marks : 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.
2. Attempt all questions.
3. Attempt any two parts from each question.
4. Marks are indicated against each question.
5. (a) Form an equation whose roots are $1,-1$, i, -1 .
(b) Solve the equation

$$
x^{3}-5 x^{2}-16 x+80=0
$$

being given that the sum of two of its roots is zero.
(c) Form the cubic equation whose roots are the values of α, β, γ given by the relations
Р.T.O.

$$
\begin{gather*}
\alpha+\beta+\gamma=3 \\
\alpha^{2}+\beta^{2}+\gamma^{2}=5 \\
\alpha^{3}+\beta^{3}+\gamma^{3}=11 \tag{6}
\end{gather*}
$$

Hence find the value of $\alpha^{4}+\beta^{4}+\gamma^{4}$.
2. (a) Prove that:

$$
\begin{equation*}
\tan 5 \theta=\frac{5 \tan \theta-10 \tan ^{3} \theta+\tan ^{5} \theta}{1-10 \tan ^{2} \theta+\tan ^{4} \theta} \tag{6.5}
\end{equation*}
$$

(b) Sum the series:
$\cos \theta \sin \theta+\cos ^{2} \theta \sin 2 \theta+\cdots+\cos ^{n} \theta \sin n \theta$ where $\theta \neq k \pi$.
(c) State DeMoivre's theorem for rational indices and use it to solve the equation:

$$
\begin{equation*}
z^{7}+z=0 \tag{6.5}
\end{equation*}
$$

3. (a) Verify that the matrix

$$
A=\left[\begin{array}{rrr}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right]
$$

satisfies its characteristic equation and hence obtain A^{-1}.
(b) Solve the system of linear equations

$$
\begin{gather*}
x-3 y+z=-1 \tag{6}\\
2 x+y-4 z=-1 \\
6 x-7 y+8 z=7
\end{gather*}
$$

(c) Reduce the matrix

$$
A=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \tag{6}\\
3 & 4 & 5 & 2 \\
2 & 3 & 4 & 0
\end{array}\right]
$$

to its normal form and then find its rank.
4. (a) Show that the vectors $v_{1}=(1,1,2,4), v_{2}=(2,-1$, $-5,2), v_{3}=(1,-1,-4,0)$ and $v_{4}=(2,1,1,6)$ are linearly independent in $R^{4}(R)$.
(b) Let V be the vector space of all $\mathrm{n} \times \mathrm{n}$ square matrices over a field F. Show that the set S of all symmetric matrices over Fisa subspace of V .
(c) Let V be the set of ordered pairs (a, b) of real numbers. Let us define

$$
\begin{aligned}
(\mathrm{a}, \mathrm{~b})+(\mathrm{c}, \mathrm{~d}) & =(\mathrm{a}+\mathrm{b}, \mathrm{c}+\mathrm{d}) \\
\text { and } \mathrm{k}(\mathrm{a}, \mathrm{~b}) & =(\mathrm{ka}, 0)
\end{aligned}
$$

Show that V is not a vector space over R , where R is the set of real numbers.
P.T.O.
5. (a) Write $\left(\begin{array}{cccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 4 & 10 & 5 & 7 & 8 & 2 & 6 & 9 & 1\end{array}\right)$ as a Product disjoint cycles, construct its associated diagram and find its order.
(b) State Euler's theorem. Hence, show that $23^{12} \equiv$ $1(\bmod 28)$.
(c) Let $\mathrm{G}=\mathrm{R}--\{-1\}$. Define * on G by a $* \mathrm{~b}=\mathrm{a}+$ $b+a b$. Show that $\langle G, *>$ is a group.
6. (a) Let $\mathrm{G}=\mathrm{GL}_{2}(\mathrm{R})$. Show that $\mathrm{T}=\left\{\left[\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ 0 & d\end{array}\right], \mathrm{ad} \neq 0\right\}$ is a subgroup of G.
(b) Prove that rigid motions of a square yield the group S_{4}.
(c) The set of Gaussian integers $Z[i]=[a+b i, a$, $b \in Z\}$ is a subring of the ring of complex numbers
c.

